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Abstract Accurate image acquisition techniques and

analysis protocols for a reliable characterization of tissue

engineering scaffolds are yet to be well defined. To this

aim, the most promising imaging technique seems to be the

X-ray computed microtomography (l-CT). However criti-

cal issues of the analysis process deal with the represen-

tativeness of the selected Volume of Interest (VOI) and,

most significantly, its segmentation. This article presents

an image analysis protocol that computes a set of quanti-

tative descriptors suitable for characterizing the morphol-

ogy and the micro-architecture of alginate/hydroxyapatite

bone tissue engineering scaffolds. Considering different

VOIs extracted from different l-CT datasets, an automated

segmentation technique is suggested and compared against

a manual segmentation. Variable sizes of VOIs are also

considered in order to assess their representativeness. The

resulting image analysis protocol is reproducible, parame-

ter-free and it automatically provides accurate quantitative

information in addition to the simple qualitative observa-

tion of the acquired images.

1 Introduction

Approaches in scaffold design must be able to create por-

ous structures to attain desired mechanical function as well

as mass transport properties. Material chemistry and the

micro-architecture determine the functional properties of a

scaffold as well as how cells interact with it [12]. In par-

ticular, for bone tissue engineering, osteoconductivity lar-

gely depends upon the geometry of the scaffold. The

degree of porosity and interconnection of the pores are also

crucial for the in vivo bone tissue ingrowth in terms of

blood vessels invasion, migration and proliferation of

osteoblasts and matrix deposition in the void spaces.

Therefore, critical issues for the design of a scaffold con-

cern pore size, pore geometry, spatial distribution of pores

and their interconnections in order to correctly derive

mechanical and mass-transport properties and improve the

effectiveness of biomaterials for bone tissue engineering

[36]. However, assessing these structural properties is a

challenging task. While it seems obvious that a scaffold

needs to have pores and channels to allow cells to grow

within it with the proper supply of nutrients, it is not so

obvious to determine a priori what their shape, dimensions

and interconnections should be as well as how these

parameters can be effectively assessed [18].

Commonly, two-dimensional (2D) imaging systems

such as scanning electron microscopy (SEM) are used for

these determinations [26], although 2D systems show

limits for the evaluation of some scaffold characteristics

such as pore interconnectivity. To this aim, the most

promising technique seems to be the computed microto-

mography (l-CT) [11] widely used for the characterization

of scaffolds [4, 21, 27, 36, 43]. Micro-CT allows 3D

images to be obtained of the internal core of a sample in a

non destructive way and with a spatial resolution in the
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micro-meter scale suitable for further quantitative analysis.

However, accurate image analysis protocols able to extract

quantitative measures and indices directly from l-CT

images are yet to be well defined.

The challenging part of the quantitative analysis of l-CT

images lies in segmentation, i.e., a voxel classification

process in which an image is separated into subsets by

assigning individual voxels to classes [40]. Micro-CT

images are usually segmented by thresholding gray levels

and the preferred choice of selecting the threshold value is

mainly based on manual visual assessment [5–7, 14, 21].

However, such a process is subjective, time-consuming and

factors like room lighting, monitor brightness/contrast

settings, operator fatigue and limited gray-scale shade

perception can affect the reproducibility of visual thres-

holding [38]. Therefore it is worthy to investigate alter-

native objective and automatic thresholding techniques in

order to overcome the subjectivity of manual thresholding.

Jones et al. [15] proposed an edge-based kriging seg-

mentation algorithm [32] which however involves the

manual choice of two cutoff values. Likewise, the curve

integration method proposed in [9, 10] first requires a

manual assignment to train the process. Moore et al. [29]

suggest to accept as the threshold the one producing a

binary image in which the resulting porosity (percentage of

background voxels over the total number) is similar to

either the theoretical porosity (based on known porogen

concentration) or to the measured porosity (based on

mercury intrusion porosimetry). However, this technique

clearly requires external data (the theoretical or measured

porosity) for the segmentation.

In the present article, an effective image analysis pro-

tocol with a fully automatic segmentation is presented.

Different automatic thresholding techniques are examined

and quantitatively compared against a manual thresholding

performed onto three different l-CT datasets of alginate/

hydroxyapatite composite scaffolds (Fig. 1). After the

comparison, the thresholding technique resulting as the

best one was selected to be part of the proposed automated

protocol. Several quantitative descriptors are then selected

as relevant and applied to both the manually and auto-

matically segmented images in order to evaluate the dif-

ferences between the proposed method and the results of a

manual segmentation. Different Volumes Of Interest

(VOIs) with variable size and position are also considered

in order to assess the representativeness of the chosen

VOIs, which is an important issue for the accuracy of the

results. The considered alginate/hydroxyapatite scaffolds

have been already characterized from a chemical and

mechanical point of view in [43] and a few morphological

descriptors were also extracted. In the present article,

several quantitative descriptors are computed directly from

l-CT images without any particular assumption on the

structure under investigation, i.e., the scaffold is considered

as a generic two-phase micro-structure having an inter-

connected porous space. This more comprehensive and

model-independent quantitative characterization combined

with automatic segmentation and VOI representativeness

considerations may fruitfully help the design and the

analysis of bone tissue engineering scaffolds.

2 Materials and methods

2.1 Materials description

Sodium alginate (Alg) samples isolated from Laminaria

hyperborea stipe were provided by FMC Biopolymer

(Norway) (MW = 1.3x105, FG = 0.69; FGG = 0.56,

where G stands for the guluronic acid co-monomer, and FG

and FGG for the total fraction of G units and GG diads,

respectively). Hydroxyapatite powder (HApF) with gran-

ules of an average value of about 150 nm was from Fluka

(USA). Preparation of nano-hydroxyapatite (nHAp) with

average dimension of 120 nm was achieved following the

indications reported elsewhere [30]. Three composite

scaffolds were prepared as described in [43]: pure alginate

gels (hydroxyapatite-free) prepared by replacing the

hydroxyapatite with CaCO3 (corresponding to 30 mM of

Ca2?) hereafter referred as Alg/CaCO3, an alginate with

hydroxyapatite powder from Fluka (hereafter Alg/HApF)

sample and a alginate with nano-hydroxyapatite (Alg/

nHAp) sample.

2.2 X-ray micro-CT imaging

The l-CT images of the samples were acquired using a

microfocus X-ray source in a cone beam geometry at the

TOMOLAB station (www.elettra.trieste.it/Labs/TOMOLAB).

All the l-CT scans were performed with the following

parameters: distance source-sample = 100 mm; distance

source-detector = 400 mm; 1440 tomographic projections

over a 360� scan angle; tube voltage = 40 kV; tube cur-

rent = 200 lA; exposure time = 2.6 s; focal spot size =

5 lm; resulting spatial resolution = 6.25 lm. While the

l-CT setup is the same for all the samples, independent

conversion of the images to 8-bit format was performed

according to an automatic min/max normalization proce-

dure. Doing so, the three l-CT datasets have to be considered

as independent and therefore the three gray-level scales are

not comparable.

2.3 Volume of interest (VOI) extraction

The first step of image analysis consists in the extraction of

one or more Volumes of Interest (VOIs). Roughly, the
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extracted VOI should be small enough to be easily handled

by the available computer hardware but at the same time it

should be large enough to comprehend all the representa-

tive features of the sample. A common rule suggests to

select VOIs having size of about one order of magnitude

larger than the characteristic size of the underlying struc-

ture. This concept is sometimes referred to as macroscopic

homogenization [33] but it requires some a priori knowl-

edge about the underlying structure. In this study, four

VOIs of 2.5 9 2.5 9 2.5 mm3 (4003 voxels) were extrac-

ted from each considered l-CT dataset. This particular VOI

size was chosen because it ensures to select four VOIs

without no overlapped areas. Selecting an equal number of

non-overlapped VOIs was observed to be difficult for

increased sizes. The consideration of different VOIs allows

to search for a dependence from the size of the VOI itself

or from the area of the l-CT dataset from which the VOI is

extracted, i.e., how the investigated parameters behave

when the size of the VOI is kept constant but its position is

altered. However, more accurate considerations about the

size of the VOI need to be performed in order to evaluate

its representativeness and in this article a simple validation

process is suggested. Each VOI was reduced in turn to

3503, 3003, 2503, 2003, 1503 and 1003 voxels (i.e., 2.23,

1.93, 1.63, 1.33, 0.93, 0.63 mm3) by cropping an equal

amount of voxels from each side and the cropped VOI was

re-subjected to the analysis. The adoption of cropped ver-

sions from the original VOI instead of simply considering

other resized VOIs simplify the computational require-

ments of this validation process and does not require user’s

involvement for the selection of the smaller VOIs.

2.4 Automated image thresholding

After VOI extraction, a segmentation process is required.

Several automatic thresholding techniques have been

proposed in the literature [41]. In the present article,

seven automatic fixed-threshold techniques are taken into

account. In principle, a global threshold for the whole 3D

dataset is preferable and this is coherent with the typical

behavior of a human operator inspecting all the reconstructed

stack of images. However, in this study each VOI was sub-

jected to the automatic segmentation techniques. This allows

to check for the robustness of the automatic thresholding

methods to be checked, i.e., how much the methods are

affected by small histogram variations resulting from differ-

ent VOIs extracted from different areas of the l-CT dataset.

Next, the automatic thresholding techniques considered

in the present study are briefly summarized. Kittler and

Illingworth [20] proposed a method that consists in arbi-

trarily dividing the histogram into two parts (the fore-

ground and the background), modeling each part with a

normal distribution, comparing the resulting model based

on a mixture of these normal distribution with the original

histogram and assuming as optimal the threshold that

minimizes a criterion function based on the classification

error probability. Ridler and Calvard [39] advanced a

method in which a unique threshold is assumed to be the

average of the foreground and background class means.

The means of the two parts can be evaluated only after the

threshold is determined, but the threshold needs to be

computed from the two means. Therefore, an iterative

algorithm was suggested: first, an initial threshold is

selected (the mean of the entire histogram is a sufficient

starting point), then the two means for the two distributions

on either side of the threshold are calculated. A new

threshold is obtained by averaging these means and the

process continues until the value of the threshold con-

verges. Otsu [34] suggested to compute the intra-class

variance, i.e., the weighted sum of the variances of each

class (the background and the foreground) adopting the

number of voxels in the class as a weight. Among all the

possible thresholds, the optimal is the one that minimizes

this intra-class variance. The Tsai’s [42] method first

computes gray-level moments from the input’s histogram,

and then obtains the threshold according to the principle

Fig. 1 A 2.5 9 2.5 mm2 (4002 pixels) slice of each considered micro-CT dataset: a Alg/CaCO3; b Alg/nHAp; c Alg/HapF. The scale bar is

0.5 mm in all the images
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that gray-level moments keep unchanged before and after

thresholding. The Pun’s [37] method is based on entropic

thresholding: an entropy-thresholded image is the one that

preserves (as much as possible) the information contained

in the original unthresholded image in terms of entropy.

Kapur et al. [16] improved the Pun’s approach considering

the image foreground and background as two different

classes of events. It first measures the class entropies,

which is interpreted as a measure of class compactness.

When the sum of the two class entropies reaches its max-

imum, the image is said to be optimally thresholded.

Finally, Rajagopalan et al. [38] proposed an automatic

thresholding method which exploits the feature-localizing

characteristics of Fourier phases. For each possible

threshold, the phase image of the thresholded image is

computed and compared against the phase image of the

original gray-level image. The best threshold is the one for

which the normalized cross correlation of the phase images

is maximum.

In the presently proposed protocol the segmentation

process includes a parameter-free post-thresholding step as

an attempt to reduce misclassified voxels. Since a scaffold

possesses an interconnected porous network, an easy way

to perform an effective post-thresholding ‘‘cleaning’’ could

be obtained by simply removing internal connected com-

ponents, i.e. connected components that do not ‘‘touch’’

VOI margins. This filter is included into the proposed

segmentation process as a post-thresholding step (see

Fig. 2). An example of the results of the whole segmen-

tation process (thresholding and post-processing) is repor-

ted in Fig. 3.

In order to test the reliability (or the failure) of an

automatic thresholding [46], in the present article the

automatically segmented images obtained according to the

automatic methods are compared against a manually seg-

mented image. Of course, the manually assessed threshold

may not be the ‘‘best’’ one—which still remains

unknown—but practically it makes sense to consider the

manually thresholded image as a reference for the aim of

this study. The automatic segmentation of each image is

obtained by thresholding with the mean value of all the

thresholds determined on each of the four VOI extracted

from the original image. On the other hand, the manual

binarization is realized by using a threshold proposed by an

expert human supervisor. In both cases the post-processing

step follows. The comparison is a simple strategy that

allows to evaluate which one of the automatic thresholding

techniques could be reasonably considered as the most

Fig. 2 Effects of the proposed

post-processing on a slice of a

VOI extracted from the CT

dataset of the Alg/CaCO3

sample: a original image;

b simple thresholding (threshold

determined according to the

Kittler and Illingworth method);

c elimination of all the

connected components in touch

with VOI margins resulting in

an image with only binary

noise; d difference of (b) minus

(c) images, resulting in a

correctly segmented image. For

the sake of clarity only one slice

of the VOI is shown though the

processing is performed in 3D
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effective at producing an image that is the most similar to

the one proposed by an expert human supervisor. In the

present paper the Misclassification Error (ME) [45]

between the manually and the automatically segmented

image is adopted. The ME is calculated as 1 - (TP ? TN)/

N where TP is the number of object voxels correctly

detected (True Positives), TN is the number of background

voxels correctly detected (True Negatives) and N is the

total number of voxels. The misclassification error varies

from 0, for a perfectly classified image, to 1 for a totally

wrongly binarized image.

2.5 Basic characteristics

Starting from the correctly segmented VOI it is possible to

compute several quantitative descriptors for the morphol-

ogy of the considered scaffolds. In the present article,

different families of descriptors are selected to be the most

relevant to this aim. The first group represents basic

characteristics: the volume density (VV) or its comple-

mentary measure porosity (1 - VV) and the specific sur-

face area or surface density (SV). These parameters are

computed using the algorithms proposed in [33]. The

Fig. 3 Comparison of the different segmentation results (threshold-

ing plus post-processing in all the cases): a original slice (the scale bar

is 0.5 mm); b manual thresholding (threshold = 51); c Kittler’s

method (threshold = 50); d Ridler’s method (threshold = 58);

e Otsu’s method (threshold = 59); f Tsai’s method (threshold = 61);

g Pun’s method (threshold = 42); h Rajagopalan’s method (thresh-

old = 41); i Kapur’s method (threshold = 81). For the sake of clarity

only one central slice of the considered VOI of the Alg/CaCO3

sample is shown, however 3D processing has been performed on the

whole stack
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porosity represents the number of voxels belonging to the

background with respect to the total number of voxels in

VOI. The specific surface area is the interface area between

the phases (the scaffold and the porous network) to the total

volume of VOI ratio.

2.6 Structural anisotropy analysis

Information about the anisotropy of the microarchitecture

is often necessary, i.e., the presence of preferential orien-

tation(s) of the structure. The most commonly used method

for the characterization of anisotropy is based on the mean

intercept length (MIL) measure that computes the number

of intersections between a linear grid and the pore/material

interface as a function of the grid orientation [19]. Three

dimensional MIL measurements may be then summarized

by the isotropy index I that varies between 0 (all obser-

vation confined into a single plane or axis) and 1 (perfect

isotropy) and the elongation index E that varies between 0

(no preferred orientation) and 1 (a perfect preferred ori-

entation with only parallel observations).

2.7 Skeleton analysis

In the present paper, a family of descriptors based on

skeleton analysis [23] is also proposed in order to derive

pore and throat size distribution. In the present article the

skeletonization algorithm presented in [2] has been adopted

and pore and throat thickness measures were computed

using the concept of maximal inscribed sphere [8] (see

Fig. 4). However, the geometrical determination of pore

and throat is difficult since there is no unambiguous geo-

metrical definition of where a pore ends and a connecting

channel begins. Conceptually, the skeleton nodes corre-

spond to pore bodies and the branches of the pore space

skeleton correspond to the channels (or paths) connecting the

pores. However, a typical pore/node correction has to be

applied since several skeleton nodes may occur in the same

pore body [22, 24]. Some concerns still remain for the throats

size determination. While very short branches are usually

disregarded because some maximal balls centered at the

skeleton nodes may completely include the short branches,

incorrect channels may be still considered. Practically, this

means that the throat size distribution may present some

large-valued outliers due to the consideration of these

branches that do not represent physical channels. Then,

provided that the scaffold is a connected structure with no

closed void cavities, a simple indicator of the connectedness

of the 3D complex pore space is the Euler number vV. For an

open network structure, the Euler number may be calculated

from the number of nodes n and the number of branches b of

the skeleton as vV = n - b [44]. It provides a measure of

connectivity indicating the number of redundant connec-

tions. In order to normalize the Euler number with respect to

the size of the considered volume V, the parameter connec-

tivity density b computed as b = (1 - vV)/V is commonly

adopted [31]. The connectivity density does not carry

information about positions or size of connections but it is a

simple global measure of connectivity which gives higher

values for better-connected structures and lower values for

poorly connected structures. In order to better characterize

the connectivity, an interesting additional descriptor is the

coordination number Z that represents the number of con-

nections of a pore with its adjacent pores.

All the aforementioned analysis as well as the seg-

mentation process have been carried out using the Pore3D

software library [3]. Statistical analysis by means of the

Wilcoxon signed rank test for the basic characteristics, the

anisotropy analysis as well as the connectivity density and

by means of the Wilcoxon rank sum test for pore size,

throat size and coordination number was performed using

R (www.r-project.org).

Fig. 4 Volume rendering (performed using the commercial software

VG Studio MAX) of a portion of a considered VOI of the Alg/CaCO3

sample: a rendering with skeleton of the porous network; b rendering

which emphasizes some of the maximal balls used for the

characterization of the pore size distribution; c rendering which

emphasizes some of the maximal balls used for the characterization of

the throat size distribution (Color figure can be viewed in the online

edition)
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3 Results and discussion

Table 1 reports threshold values for the manual assessment

and for each automatic determination method considered in

this study. Mean values and standard deviation of the

threshold values were computed for all of the VOIs sepa-

rately for each scaffold. The very low standard deviation

values observed in the Pun’s method and in the one pro-

posed by Kittler and Illingworth indicate that they are

insensitive to VOI selection. On the other hand, other

methods (Huang and Wang, Kapur) exhibit high standard

deviation suggesting a dependence from the region to

which the VOIs belong. The latter methods have to be

discarded because fluctuations in the threshold value affect

further quantitative analysis.

Figure 3g shows that the threshold proposed by the

Pun’s method is too far from the manual one and also that

the post-processing is not able to remove the binary noise

introduced by the thresholding. This is confirmed in

Table 2 in which the values of the misclassification error

for each automatic thresholding method are reported.

Moreover, since an automatic min/max normalization

procedure was performed on each of the three l-CT data-

set, the three gray-level histograms are not comparable and

it is worthy to notice that, for instance, the Otsu’s method

proposes the same threshold (59) for both the Alg/CaCO3

and Alg/HApF samples while the Kittler and Illingworth

method better adapts to the shifts in the image histogram

suggesting a value closer to the manually selected one.

Therefore, among the considered, the method proposed by

Kittler and Illingworth is the most effective because it

presents the lowest mean value of the misclassification

error (about 1%) together with a very low dependence on

the selected VOI.

Table 3 reports the quantitative results computed after

the manual and the automatic segmentation with the Kittler

and Illingworth method, respectively. It can be noticed that

the differences in the segmentation affect the computation

of parameters but in a negligible way and this is confirmed

by the statistical analysis (Wilcoxon test) that revealed no

P-value below the 0.05 significance level. With more

details, in all the cases automatic segmentation provides

threshold values lower than the manual ones. This means

that the scaffold results slightly thicker in the case of the

automatic segmentation producing lower values of porosity

as well as higher values for specific surface area. More-

over, the differences observed for the basic characteristics

in the case of the Alg/HApF sample are slightly greater

than the ones observed for the other two samples which is

consistent with the fact that the automatic proposed

threshold is two gray-levels lower than the manual one (38

vs. 40) instead of just one gray-level found in the other

cases (50 vs. 51 for the Alg/CaCO3 sample and 52 vs. 53

for the Alg/nHAp sample).

On the other hand, the differences in the descriptors

based on anisotropy and skeleton analysis are not affected

Table 1 Thresholds proposed

by automatic methods for each

considered VOI

Mean values and standard

deviation (SD) of the VOIs are

also included for each method

and for each considered sample

Kittler Ridler Otsu Tsai Pun Rajagopalan Kapur

Alg/CaCO3 (manual threshold determination: 51)

VOI_1 50 58 60 62 42 43 84

VOI_2 50 57 58 60 42 40 80

VOI_3 50 57 58 60 42 40 78

VOI_4 50 58 60 62 42 40 82

Mean 50 58 59 61 42 41 81

SD 0.000 0.500 1.000 1.000 0.000 1.299 2.236

Alg/nHAp (manual threshold determination: 53)

VOI_1 52 64 66 72 46 46 108

VOI_2 52 67 68 75 46 46 108

VOI_3 52 65 66 73 46 46 112

VOI_4 52 64 65 71 46 46 108

Mean 52 65 66 73 46 46 109

SD 0.000 1.225 1.090 1.479 0.000 0.000 1.732

Alg/HApF (manual threshold determination: 40)

VOI_1 38 56 57 64 30 28 83

VOI_2 38 56 58 65 30 29 90

VOI_3 38 58 59 66 30 29 79

VOI_4 38 58 60 67 30 28 77

Mean 38 57 59 66 30 29 82

SD 0.000 1.000 1.118 1.118 0.000 0.500 4.969
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by the slightly thicker scaffold obtained in the automatic

segmentation case. In fact, the mean intercept length

method for the computation of the isotropy and elongation

indices is based on the number of intersections between a

linear grid and the pore/material interface. Although slight

variations in the threshold values influence the structure

thickness, this fact does not directly imply variations in the

pore/material interface. It is important to underline that,

since the adopted implementation uses random orienta-

tions, minimal variations in the results are observed each

Table 3 Comparison between

the characterization of the

considered samples adopting a

manual segmentation (manual

thresholding ? post-

processing) and the proposed

automated segmentation

(Kittler–Illingworth

method ? post-processing)

Mean value ± standard

deviation among the considered

Volumes of Interest (VOI) is

reported except for pore size,

throat size and coordination

number. Mean

value ± standard deviation of

the total distribution of the

considered pores is reported for

pore size, throat size and

coordination number

Alg/CaCO3 Alg/nHAp Alg/HApF

Manual segmentation

Basic characteristics

Porosity (1 - VV) 0.833 ± 0.003 0.808 ± 0.004 0.825 ± 0.004

Specific surface area (Sv) [mm-1] 12.3 ± 0.4 10.5 ± 0.4 9.2 ± 0.3

Anisotropy analysis

Isotropy index (I) 0.71 ± 0.02 0.62 ± 0.02 0.67 ± 0.03

Elongation index (E) 0.22 ± 0.01 0.33 ± 0.02 0.27 ± 0.03

Skeleton analysis

Connectivity density [mm-3] 15.5 ± 0.4 12.7 ± 1.8 15.0 ± 1.5

Coordination number (Z) 4.8 ± 3.1 4.7 ± 3.4 6.5 ± 7.0

Pore size [mm] 0.28 ± 0.12 0.31 ± 0.13 0.32 ± 0.15

Throat size [mm] 0.08 ± 0.05 0.08 ± 0.06 0.09 ± 0.06

Automated segmentation

Basic characteristics

Porosity (1 - VV) 0.826 ± 0.003 0.797 ± 0.004 0.811 ± 0.004

Specific surface area (SV) [mm-1] 12.4 ± 0.4 10.8 ± 0.4 9.6 ± 0.3

Anisotropy analysis

Isotropy index (I) 0.71 ± 0.01 0.67 ± 0.04 0.68 ± 0.03

Elongation index (E) 0.23 ± 0.01 0.28 ± 0.03 0.27 ± 0.01

Skeleton analysis

Connectivity density [mm-3] 14.4 ± 0.7 11.7 ± 1.5 14.6 ± 1.4

Coordination number (Z) 4.5 ± 2.7 4.7 ± 4.0 6.0 ± 5.2

Pore size [mm] 0.27 ± 0.11 0.30 ± 0.12 0.30 ± 0.13

Throat size [mm] 0.08 ± 0.05 0.08 ± 0.05 0.09 ± 0.06

Table 2 Misclassification error

for each considered automatic

method and for each considered

VOI with respect to the manual

thresholding

Mean value of all the considered

VOIs for all the samples is also

reported

Kittler Ridler Otsu Tsai Pun Rajagopalan Kapur

Alg/CaCO3

VOI_1 0.014 0.070 0.076 0.096 0.396 0.583 0.132

VOI_2 0.014 0.072 0.078 0.099 0.400 0.580 0.136

VOI_3 0.014 0.067 0.073 0.092 0.419 0.601 0.127

VOI_4 0.014 0.064 0.070 0.089 0.413 0.597 0.123

Alg/nHAp

VOI_1 0.011 0.088 0.093 0.124 0.463 0.463 0.187

VOI_2 0.010 0.082 0.087 0.117 0.474 0.474 0.185

VOI_3 0.011 0.092 0.097 0.130 0.466 0.466 0.197

VOI_4 0.011 0.088 0.093 0.126 0.467 0.467 0.190

Alg/HApF

VOI_1 0.008 0.045 0.051 0.062 0.415 0.515 0.132

VOI_2 0.008 0.047 0.053 0.065 0.404 0.502 0.141

VOI_3 0.007 0.044 0.050 0.061 0.397 0.496 0.137

VOI_4 0.007 0.043 0.049 0.059 0.409 0.506 0.130

Mean 0.011 0.067 0.073 0.093 0.427 0.521 0.151
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time the code is executed. However, a simple test per-

formed by re-computing 100 times the isotropy index I and

the elongation index E on a single 2.5 9 2.5 9 2.5 mm3

(4003 voxels) VOI revealed a coefficient of variation of

about 0.007 for I and about 0.020 for E demonstrating that

the random component in the computation of these

parameters is not a concern. In the case of the Alg/CaCO3

sample the isotropy index I is identical in both segmenta-

tions (0.71 ± 0.02 for the manual segmentation and

0.71 ± 0.01 for the automatic segmentation) while just

slightly increasing values can be noticed for the Alg/nHAp

sample (from 0.62 ± 0.02 for the manual segmentation to

0.67 ± 0.04 for the automatic segmentation) as well as for

the Alg/HApF sample (from 0.67 ± 0.03 for the manual

segmentation to 0.68 ± 0.03 for the automatic segmenta-

tion). In a similar way, the elongation index E increases for

the Alg/CaCO3 and Alg/nHAp samples while a minimal

decrease may be observed for the Alg/HApF sample. It is

reasonable to conclude that all samples present closely the

same degree of anisotropy and that the slight variations in

the segmentation threshold do not significantly affect the

estimation of the isotropy and elongation indexes.

In the case of the automatic segmentation, the differ-

ences in the results of skeleton analysis are related to

the increasing thickness of structures, which reduces the

number of cavities in the scaffold’s walls compared to the

manually segmented case. A reduced number of branches

and consequently a reduced number of nodes in the porous

network are then identified by the skeleton analysis.

However, due to the high number of nodes and branches

considered, the pore and throat size distribution as well as

the connectivity density and the coordination number are

only marginally affected by these variations. Figures 5 and

6 present an almost identical behavior and, in addition,

mean values (and standard deviation) for the pore and

throat size distribution for all the considered samples

present negligible differences.

The arbitrary selection of the l-CT Volume of Interest

(VOI) seems to not significantly affect the results since

generally low standard deviations are observed. However,

more accurate considerations that combine both size and

position of the VOI are required. In fact, a low standard

deviation may imply that a too small VOI was chosen and

an insufficient number of elements was taken into account.

An oversized volume would also result in minimal changes

of the computed values when altering the VOI position as
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Fig. 5 Distribution of pore and throat size for the considered samples

in the case of the manual segmentation: a Alg/CaCO3; b Alg/nHAp;

c Alg/HApF. Each histogram is computed taking into account all the

four VOIs and the size of the bins is equal to the voxel size of the

images (6.25 lm)
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the differences would simply average out. Figure 7 reports

the results for the VOI representativeness check: for each

parameter and for each sample, the mean value and the

dispersion bar (±standard deviation) among the four VOIs

cropped to the considered resize are reported. The sensi-

tivity of each computed parameter with respect to the size

of the VOI and, consequently, the representativeness of the

considered VOI is suggested by the trend line among the

different sizes and the dispersion bars. In general, a steady

behaviour for both the trend line and the width of the

dispersion bars suggests a proper VOI size. While, of

course, this proper VOI size may differ among the

parameters, generally the best trade-off is identified in

order to assess all the parameters from the same VOIs. For

the basic characteristics it can be noticed that even small

VOIs may be used for the estimation of these parameters if

the mean value of different VOIs is computed. A similar

behaviour can be observed for the isotropy indices sug-

gesting that the proposed 2.53 mm3 VOI allows to get

reliable results for the considered samples with respect to

the adopted imaging resolution. On the other hand, the

parameters based on skeleton analysis (pore and throat

diameter, connectivity density and coordination number)

require an adequate VOI size. In fact a more fluctuating

trend for the small sizes can be noticed. This is because an

insufficient number of nodes and branches are determined

if small VOIs are considered. Keeping in mind that the

mean pore size is around 300 lm and that only spheres

totally incorporated into VOI margins are included in the

computation of results, in a 0.6 9 0.6 9 0.6 mm3

(1003 voxels) VOI a very low number of pores can be

identified. Reliable results require an enlarged VOI and the

2.5 9 2.5 9 2.5 mm3 (4003 voxels) VOI seems to be a

good choice for the considered samples and the adopted

imaging resolution. From a theoretical point of view, the

adopted test for representativeness supposes that the

investigated volume presents a micro-structural pattern

repeated in some way throughout the sample and the test

aims at identifying a VOI size that surely includes the

pattern. Although such a perfectly repeated pattern cannot

be theoretically supposed, the considered samples do

present a regular architecture and therefore this test can

supply useful information.

Focusing on the specific sample characteristics, it is

allowed to conclude that the addition of hydroxyapatite

(independently of average granule dimensions, at least in

range from 120 to 150 nm) practically does not affect the

overall characteristics of the freeze-casted alginate gels.

Consequently, it appears that it is probably the combination

of the 3D architecture of alginate gels together with the

given procedure of freezing and sublimation which prevail

in producing the final dry scaffold architecture. Further
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Fig. 6 Distribution of pore and throat size for the considered samples

in the case of the automatic proposed segmentation: a Alg/CaCO3;

b Alg/nHAp c Alg/HApF. Each histogram is computed taking into

account all the four VOIs and the size of the bins is equal to the voxel

size of the images (6.25 lm)
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work using different polymeric gelling materials and

freeze-casting procedure details is planned to assess the

generality of this statement.

In bone biomaterial engineering, early studies showed

that a minimum pore size of 100 lm was required to allow

bone tissue ingrowth in ceramic scaffolds [13]. Further

investigations were carried out to understand the structural

requirements for bone tissue engineering. Although the

optimal pore size vary with scaffold material, the general

consensus is that an ideal scaffold should possess a global

porosity in the range of 80–90% with interconnections of at

least 50 lm in diameter between its macropores in the
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Fig. 7 Analysis of the representativeness of the proposed VOI size

(only the case of automated segmentation is considered) for each

quantitative descriptor: a porosity; b specific surface area; c elonga-

tion index; d isotropy index; e connectivity density; f coordination

number; g pore diameter; h throat diameter. The average value with

the dispersion bar (±standard deviation) of the four VOIs are reported

for each cropped VOI size and for each considered sample
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100–400 lm pore size range [1, 17, 25, 28, 35]. The results

of the micro-CT analysis show that the alginate/hydroxy-

apatite scaffolds analyzed in the present study have a

suitable architecture for tissue engineering applications in

terms of pore and throat size. Moreover, a quantification of

the degree of anisotropy and interconnectivity confirm that

alginate/hydroxyapatite biocomposite scaffolds for bone

ingrowth are indeed trabecular structures with high and

isotropic connectivity [43].

4 Conclusions

In the present article, a parameter-free and model-inde-

pendent methodology for the characterization of bone tis-

sue engineering scaffolds directly from computed

microtomography (l-CT) images is presented. An auto-

matic segmentation method composed by the Kittler and

Illingworth thresholding [20] and a parameter-free post

processing cleaning step able to reduce misclassified vox-

els is proposed. After segmentation, the porosity as well as

more refined descriptors such as pore and throat size,

degree of interconnectivity and isotropy indices can then be

computed. By analyzing l-CT images of three different

alginate/hydroxyapatite scaffolds it was here investigated

how variations in the segmentation affect these numerical

quantitative descriptors. Since the results showed negligi-

ble differences, it is here suggested that an automatic and

objective segmentation has to be preferred. The proposed

descriptors are also influenced by the selection of the

volume of interest both in terms of position and dimen-

sions. In the present study, it is suggested also how to

correctly investigate on these crucial aspects. The resulting

framework is an automatic tool for the characterization of

bone tissue engineering scaffolds by means of l-CT image

analysis.
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